
Journal of Statistical Physics. Vol. 83, Nos. 1/2, 1996 

Scars in Nonintegrable and Rational Billiards 
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We numerically study quantum mechanical features of the Bunimovich stadium 
billiard and the rational billiards which approach the former as the number of 
their sides increases. The statistics of energy levels and eigenfunctions of the 
rational billiards becomes indistinguishable from that of the Bunimovich 
stadium billiard below a certain energy. This fact contradicts the classical 
picture in which the Bunimovich stadium billiard is chaotic, but the rational 
billiard is pseudointegrable. It is numerically confirmed that the wave functions 
do not detect the fine structure, which is much smaller than the wavelength. 

KEY WORDS: Quantum chaos: pseudointegrable systems; Bunimovich 
stadium; rational billiard. 

1. I N T R O D U C T I O N  

In tegrable  systems are except ional  in dynamica l  systems, while systems 
which are  r igorous ly  p roved  to be chaot ic  are also rare. This is par t ly  due 
to the inevi table  ma themat i ca l  complex i ty  of  the proofs  (e.g., the Sinai 
bi l l iard and the Bunimovich  s tadium).  However ,  there  exists a wide inter-  
media te  range of  dynamica l  systems which are nei ther  in tegrable  nor  
chaotic.  The  pseudo in tegrab le  system c ~1 is one such system, which has n 
degrees of  f reedom and n cons tan ts  of  m o t i o n  as the in tegrable  system has, 
but  its var iables  are not  separable .  The  pseudo in tegrab le  system differs 
from the in tegrable  one in tha t  its cons tan ts  of  mo t ion  do  not  make  an 
invar iant  to rus , in  phase  space. I f  they m a k e  a torus,  each degree of  f reedom 
is connected  to a g lobal  cons tan t  of  m o t i o n  and the system becomes 
integrable,  
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The rational billiard is different from the ordinary stadium billiard in 
that the latter's semicircular parts are replaced by polygons. The rational 
billiard is an example of pseudointegrable systems, t'--4~ Recently in classical 
mechanics it has been reported that even the rational billiard shows some 
chaotic features like the Bunimovich stadium if it has sufficiently many 
sides. ~51 It has been argued that the Lyapunov exponents are crucially 
dependent on the "precision of algorithm." Here the "precision of algo- 
rithm" means a balance of the precision of the computer calculation and 
the minute difference of the initial angles between velocity directions for the 
Lyapunov pair. 

In this paper we investigate the quantum mechanical behavior of the 
Bunimovich stadium and rational billiards. One of our interests lies in how 
the "precision of algorithm" affects its quantal behavior. It is known that 
a zero Lyapunov exponent does not necessarily mean that quantal levels 
are not repulsive, t3. 6) Classically the Lyapunov pair in the pseudointegrable 
system needs a much longer time to diffuse than in the chaotic system, but 
it does diffuse. It is reported that diffusion is observed in rational billiards 
even with a relatively small number of sides. 15~ Diffusion is also observed 
in rhombus billiards tT~ even though it has dependence on the "precision of 
algorithm." This implies that we must carry out calculations up to fairly 
high energy in order to see the quantal influence of the diffusion in terms 
of the nearest neighbor level spacing distributions, tT~ 

This paper is organized as follows. In Section 2 we define the N-stadium 
which approaches the Bunimovich stadium if N goes to infinity. The 
method to obtain the eigenenergies and eigenfunctions of these billiards 
is explained in detail. In Section 3, using several statistics we argue the dif- 
ference between the Bunimovich stadium and the rational billiards in terms 
of energy levels. We show that the statistics has an energy dependence, 
which is easily understood from the uncertainty principle. In Section 4 we 
study the fourier transformation of the level density, which eventually gives 
the lengths of classical periodic orbits in each billiard. In Section 5 some 
wave function in the rational billiard is shown to resemble a scarred wave 
function appearing in the Bunimovich stadium. In Section 6 we calculate 
the residual parameter, which is one of the statistics of wave functions. 
A summary and conclusions are given in Section 7. 

2. RATIONAL BILLIARDS AND EIGENFUNCTIONS 

A polygonal N-stadium is constructed from the 2 x 4  stadium of 
Bunimovich 181 by the following procedure (Fig. 1). Both a and r are equal 
to one. First part of either the right or left side of the 2N-sided polygon is 
inscribed in the corresponding semicircular part of the 2 x 4 stadium. Then 
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The N-s tad ium (N=3) 

2r 

2a 

Fig. 1. Schematic illustration of the procedure for making an N-stadium. The dotted lines 
represent polygons inscribed in the semicircular parts of the 2 x 4 stadium. We make two 
horizontal lines longer so that the area of the 2N-sided polygon remains the same as that of 
the 2 x 4 stadium. 

we extend two horizontal  straight lines to make the area of the 2N-sided 
polygon (in fact, now the n u m b e r  of sides is 2 N + 2 )  remain the same as 
that of the 2 x 4  s tadium (A = 4 + ~ ) .  We call this billiard an N-stadium. 
The N-s tadium with N-- ,  + ~ is considered to be the 2 x 4 stadium. Half  
of the vertical height, the parameter  r in Fig. 1, remains fixed to one dur ing  
the above procedure. Therefore we expect that  the vertical bounc ing  ball 
modes are stable with respect to the change of N. They are indeed found 

to be very stable in terms both  of their energies and  the characteristics of 
wave functions,  as one sees later. The areas and the perimeters of the 
billiards are given in Table  I. 

In  this paper  we consider  the rat ional  billiards for N =  2, 3, 7, 10 and 
the 2 x 4  s tadium billiard and make a comparat ive  study of them. The 
bounda ry  condi t ion  is assumed to be of Dirichlet type. Only  the o d d - o d d  
wave funct ions with respect to two symmetry lines are considered. In other 

Table I. Areas and Perimeters of the Billiards 

Bi l l iard �9 Area Perimeter 

N=2 4+~r=7.142 
N=3 4 + n  
N=7 4 + n  

N=I0  4 + n  
2 x 4 stadium 4 + n 

rc + 2 + 4 v/22 = 10.798 
 +10- ,/5=10544 
n + 4 - 7 sin(n/7) + 28 sin(n/14) --- 10.335 
n + 4 - 10 sin(n/l O) + 40 sin(n/20) = 10.309 
4 + 2n = 10.283 
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words we desymmetrize the billiards to avoid degeneracies of even and odd 
parities with respect to the two symmetry lines. We adopt the time- 
independent SchrSdinger equation: 

h 2 
- 2--~ A ~ =  EFt (1) 

In the following we put 2m = 1 and h = 1 for simplicity. Then the momen- 
tum k and the energy E of the eigenstates are related as E = k 2. 

To obtain at least a few thousand eigenstates, we use the method of 
superposition of plane waves, which was invented by Heller. tS) We have 
checked the accuracy of our calculations by referring to the results given by 
Heller c8) and Takami tg) in the case of the 2 x 4  stadium. Our results 
coincide with theirs, with relative errors less than 10 -4 in momentum. We 
have obtained the same eigenenergies as Takami up to the 290th state. In 
addition we have compared the mode numbers of our results with those 
given by Weyl's lawJ ~o) Since we consider only the odd-odd eigenstates in 
our analysis, the desymmetrized billiard has the a r e a  Aq( = 1 + n/4) and the 
p e r i m e t e r  Pq, where the perimeter is Pq = 4 + n/2 for the 2 x 4 stadium and 

2N (N) (rc)~ {~os(n/2N) fOrfor NOddN even = 3 + ~ 2 -  sm + N s i n  + Pq 

(2) 

for the N-stadium. Then the mode number by Weyl's law is given by 

= A "  E -  . . .  (3) N( E) 4re 

On 2-, 3-, 7-, and 10-stadiums and the 2 x 4  stadium, 3178, 3172, 3168, 
3171, and 3170 eigenenergies are found, respectively, from the ground state 
up to k =  151. From the WeyI's law they are estimated as 3168 for the 
2-stadium and 3172 for the other billiards. Therefore the numbers almost 
coincide with those by Weyl's law for N~> 3. Some of the figures of the 
eigenfunctions have been drawn to check that they are indeed the eigen- 
functions. 

3. ENERGY LEVEL STATISTICS 

As will be explained in detail in Section 5, if N is sufficiently large, 
each eigenfunction of the N-stadium has almost the same structure as the 
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corresponding one of the 2 x 4 stadium up to a certain momentum k. Here 
k depends on N. We call this highest momentum kN. 

The behavior of the nearest neighbor level spacing distribution 
(NNSD) is dependent on kN as was already examined on rhombus 
billiards. (7) In order to take kN larger, it is expected that we must make N 
larger. Then the NNSD of the N-stadium becomes indistinguishable from 
that of the 2 x 4 stadium. The NNSD up to k = 151 shows that the distribu- 
tion drastically changes when N increases from 2 to I0 (Fig. 2). The NNSD 
of the 2-stadium seems just in between the Poisson and Wigner distribu- 
tions. The 2 •  stadium and the 10-stadium look very similar in the 
NNSD. The A 3 statistics for each stadium also shows that upon increasing 
the number of sides, the shape of the figure shifts from the mixture of 
Poisson and Wigner distributions to Wigner (Fig. 3). We note here that the 
,d 3 statistics of the 2 x 4 stadium in Fig. 3 is close to that by GOE, but 
about 10% larger. This may be due to the contribution of the bouncing 
ball modes. (ll' 121 
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Fig. 2. (a) The NNSD of the 2-stadium. Two solid lines show the Wigner and Poisson 
distributions. (b) The NNSD of the 3-stadium. (c) The NNSD of the 7-stadium. (d) The 
NNSD of the 10-stadium. (e) The N N S D  of the 2 x4-s tadium. 
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Fig. 2. (Continued) 

To see the energy dependence of the NNSD, we fit our data to the 
Brody distribution 

P/~(s)=(l+fl)~sPexp(-~s'+P), ~x=\ \ ~-~-~) ) (4) 

where the Brody parameter fl is determined by using the method of least 
squares. The parameters f l = 0  and f l=  1 yield Poisson and Wigner 
distributions, respectively. It is not our intention to assert that the NNSD is 
indeed of the Brody type, but our concern is to measure the quantal 
chaoticity in each billiard. As expected, the fitted Brody parameters have an 
energy dependence (Fig. 4). From the first excited state each bin of 1000 
energy spacings is used to fit the Brody distributions. The distribution of the 
2 x4  stadium becomes more Wigner-like when the energy gets higher. 
On the other hand, the 2- and 3-stadiums become more Poisson-like. There 
is no particular signature for telling the difference between the 10-stadium 
and the 2 x 4 stadium in terms of the N \ S D below the momentum k~v = 151. 

Let us express the physical meaning of the above properties of level 
statistics. As already mentioned, in the low-energy regime eigenfunctions 
cannot detect the fine structure of the shape of the billiard. At higher 
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(Continued) 

energy, finer structure of the boundary can be realized in terms of the wave 
functions. From the uncertainty principle, a particle can detect the 
difference of the shape l if its size is comparable to the wavelength 

h 2 
1 ~ 2 =  (5) 

mk k 

We have 1~0.01 for k =  151. Roughly speaking, the difference between 
both shapes is caused by the replacement of semicircles by polygons. The 
farthest point on the perimeter of the 2 • 4 stadium from the corresponding 
one on the N-stadium has a distance of the same order (see Fig. 1 ), 

l ~ l - - c o s  ~-~ ~ 8 N  2 (6) 

If N =  10, the distance is in the order of 0.01. This justifies our numerical 
experiment on the energy level statistics. It is found that fl~. - fin is propor- 
tional to 1/N 2 as shown in Fig. 5, where fl~ is the fitted Brody parameter 
for the 2 x 4 stadium and fin is that for the N-stadium. A similar relation 
between N and the initial velocity angular separation in classical mechanics 
was already reportedJ 5~ 
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4. F O U R I E R  T R A N S F O R M A T I O N  OF LEVEL D E N S I T Y  A N D  
P E R I O D I C  O R B I T S  

Since the invention of the trace formula by Gutzwiller, it has been 
known that each peak of the Fourier transformation of the level density 
corresponds to a (or one-parameter family of) classical periodic orbit both 
in regular and chaotic systems. In rational billiards most of the peaks come 
from the stable bouncing ball mode orbits, but they come from isolated 
unstable periodic orbits in the 2 x 4  stadium. By inspection we find the 
classical periodic orbits up to the length L = 14 for the 2-stadium (Fig. 6) 
and up to L = 8 for the 3-stadium (Fig. 7). 

Fourier transformation of the level density (with respect to momen- 
tum) is defined as 

f f  s ~ exp(ikjL) 
~t(L) = dkexp(ikL) ~ 5 ( k ' - - k ) ) =  2kj 

j=l  j=l  
(7) 
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Fig. 3. The zl 3 statistics of the N-stadium (N = 2, 3, 7) and the 2 x 4 stadium. 
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Energy dependence of the Brody parameter of the N-stadium (n = 2, 3, 7, 10) and the 
2 x 4 stadium. 

where kj is the momentum of the j th  level and kj is the momentum of the 
highest eigenstate we consider. In Fig. 8a-8e we show the [d(L)l-' of the 2-, 
3-, 7-, and 10-stadiums and the 2 x 4 stadium, respectively. 

The N-stadium has unique peaks coming from the vertical bouncing 
ball modes (L = 2.0, 4.0, 6.0 . . . .  ) which also exist in the 2 • 4 stadium. In the 
N-stadium most of the peaks essentially correspond to bouncing ball 
modes of one-parameter families of periodic orbits. The only exception we 
find in the 2-stadium is the periodic orbit with L = 4.65. It is an isolated 
closed orbit of length 4.65 in a family of length 9.29 (Fig. 6a) in the special 
condition that the trajectory must cross just at the center of the horizontal 
straight lines. It is considered as the special case of a one-parameter family 
of stable periodic orbits. It may be called an "unstable" orbit. Its triple 
L = 13.95 also can be seen as a peak. 

In the 3-stadium we must have peaks of horizontal bouncing ball 
modes (L=4.004,8.008 . . . .  ), but they happen to be very close to the 
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Fig. 5. fl~_.--P,v as a function of l/N'-. 

vertical ones (L=4 .0 ,  8.0 . . . .  ). Therefore horizontal bouncing modes are 
obscured by these vertical ones. Several "unstable" orbits are also found 
(L=4.60 ,  4.87, 6.33; cf. Fig. 7). 

Fourier transformation of the 10-stadium with k j=kN is also very 
similar to that of the 2 x 4 stadium. In the 2 x 4 stadium it is known 1131 that 
each peak corresponds to a classical (unstable, isolated) periodic orbit 
(Fig. 8e) (length of 2.0, 4.0, 4.47, 4.83, 5.0, 5.14, 5.20, 5.66, 6.00, 6.47, etc.). 
The corresponding peaks are clearly seen in the 10-stadium. 

5. SCARS IN CHAOTIC-  A N D  RATIONAL-  BILLIARDS 

The eigenfunction of ki( ~< kN) does not detect the precise structure of 
the peripheral part, that is, it does not detect whether the wave in the 
billiard is reflected by the semicircular part or the polygonal one. This 
means that in spite of its rationality a wave-function of the N-stadium 
might have "scars" of classical periodic orbits, which is a characteristic 
feature for chaotic systems. It is rather astonishing if we consider that the 
classical periodic orbits are very delicate with respect to reflection angles. 
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( a )  \ 

Fig. 6. Principal periodic orbits of the 2-stadium. Dotted lines represent the symmetry lines 
of the 2-stadium. The orbit c is an isolated "unstable" orbit L = 4.65. Others are representative 
of the one-parameter families of periodic orbits L=2.00  (a), 4.57 (b), 5.00 (d), 8.01 (e), 9.29 
( f ) ,  9.36 (g), 9.71 (h), 10.80 (i), 11.52 (j), 13.38 (k), 13.86 (/). 
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Fig. 7. Principal periodic orbits of the 3-stadium. Dotted lines represent the symmetry lines 
of the 3-stadium. The 3-stadiums are not pasted at broken lines. The orbits d, e, and h are 
isolated "unstable" orbits L = 4.60, 4.87, and 6.33, respectively. Others are representatives of 
the one-parameter families of periodicorbits L = 2.00 (a), 4.00 (b), 4.48 (c), 4.90 (J), 5.10 {g}. 

The nodal  pat tern  of wave functions also supports  our  observat ion 
(Figs. 9-12). We calculate squared absolute values of eigenfunctions to see 
the nodal  pattern.  As expected, vertical bounc ing  ball modes often appear  
in the rat ional  billiards. The wave functions of the 10-stadium and  
corresponding ones of the 2 x 4 s tadium look very alike. In  the 10-stadium 
even the scarred wave functions exist at expected eigenenergies. For  
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Fig. 8. (a) Fourier transform of  the spectrum of  the 2-stadium. (b) Fourier transform of  
the spectrum of  the 3-stadium. (r Fourier transform of  the spectrum of  the 7-stadium. 

(d) Fournier transform o f  the spectrum o f  the ]O-stadium. (e) Fourier transform o f  the 
spectrum of  the 2 x 4 stadium. 

example, compare the #431(k=56.7659) of the 2 x 4  stadium (Fig. 9a) 
and the #433(k = 56.8016) of the 10-stadium (Fig. 10a). 

The wave functions of the 2-stadium usually look similar to integrable 
ones. They have some regular and repeated patterns (Fig. l la- l lh) .  
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Fig.  8. (Continued) 

Mainly the vertical and oblique (zr/4 with respect to a horizontal line) 
bouncing ball orbits contribute to those regular nodal patterns. The wave 
functions with irregular patterns must be affected by some orbits with 
longer periods. The orbit of period 4.65 cannot be seen as a "scar" in the 

822/83/1-2-16 
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(a) #431  in the 2 x 4 s tad ium w i th  k = 56.7659. (b )  # 3 8 2  in the 2 x 4 s tad ium w i th  

k = 53.4741. 
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Fig. 10. (a) #433 in the lO-stadium witla k=56.8016. (b) #417 in tile lO-stadium with 
k = 55.7383. 

wave functions. It is obscured by the overwhelming contributions of the 
family of L=9.29 .  By this graphical method it is confirmed that the 
3-stadium also has horizontal bouncing ball modes (Fig. 12b, 12g) in 
addition to the vertical ones. 

If we take k ~< 151, it is numerically observed that we can approximate 
the 2 x 4  stadium by the rational billiards with N~> 10. Therefore in the 
analysis of wave functions we arrive at the same condition of the 
"uncertainty principle" discussed in Section 3. The granulation of the wave 
functions is at the smallest of the order of the wavelength 2, as seen fi'om 
the figures. The fine structure of the boundaries, which is much smaller 
than the wavelength, does not seriously affect the properties of the wave 
functions. 

6. THE RESIDUAL PARAMETER 

Several statistical properties of wave functions have also been invented 
to measure their chaotic featuresJ t4. ~51 The amplitude distribution P(qs) is 
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Fig. 11. (a) #300 in the 2-stadium with k=47.6843; (b) #320 in tile 2-stadium with 
k=49.1781; (c) #323 in the 2-stadium with k=49.3633. (d) #387 in the 2-stadium with 
k=53.8502. (e) #420 in the 2-stadium with k=56.1681. (f) #456 in the 2-stadium with 
k=58.3162. (g) #468 in the 2-stadium with k=59.1898; (11) #473 in the 2-stadium with 
k = 59.4244; (i) # 314 in the 2-stadium with k = 48.6303. 
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Fig, 11. (Continued) 
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Fig. 11. (Continued) 

the probability of finding the value ~u of the wave function. In chaotic 
billiards it is expected to form the Gaussian distribution 

Pc(~9) \ 2 n J  exp _~_~2 (8) 

where A is the area of the billiardsJ 14-16) In two-dimensional rectangular 
billiards, which are integrable, it has a different form, ~7~ 

''2 

2 v/-A I,Pl/' (9) 
PR'~) = t 0 (2  + X/~ ]0[' + otherwise 

where K(x) is the complete elliptic integral of the first kind. The wave func- 
tions of the rectangular billiards always display periodic texture. Therefore, 
in order to distinguish between chaotic and integrable billiards, we adopt 
the residual parameter, ~5" ~7) which is defined as 

p2 = f d~, (P($) - Pa(~,)) 2 (lO) 

It measures the deviation from the Gausssian distribution Pa(~b). We 
calculate p2 from the ground state to the 500th state for each billiard. The 
integration is done numerically by selecting at random 10000 points inside 
the billiards. Results are shown in Fig. 13. Near the ground state P(~b) is 
far from the Gaussian distribution, but generally p2 becomes smaller when 
the energy gets higher. 
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Fig. 12. (a) #323  in the 3-stadium with k=49.2341;  1b1#327 in the 3-stadium with 
k=49.6097" (c) #370  in the 3-stadium with k=52.6534:  (d) #413  in the 3-stadium with 
k=55.5165;  (e) #433  in the 3-stadium with k=56.7933;  (f) #445  in the 3-stadium with 
k = 57.6032; (g) #457  in the 3-stadium with k = 58.2706. 
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Fig. 12. (Continued) 
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Fig. 13. (a) The residual parameter p2 for the 2-stadium from the ground state to the 500th 
state; (b) the same for the 3-stadium; (c)the same for the 7-stadium; (d)the same for the 
lO-stadimm (e)the same for the 2 • 4 stadium. 
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Fig .  13. ( C o n t i n u e d )  
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Fig. 13. (Continued) 

There are some individual wave functions which have relatively high 
p-' values. Most of the high peaks in Fig. 13 correspond to the bouncing 
ball modes for any billiard. In the 2 x 4 stadium the only exception is a 
whispering gallery mode # 153(k = 34.5330) where p2 = 0.170. Although we 
find several scarred wave functions, they do not appear as any significant 
peaks in Fig. 13e. Therefore it is hard to find a scarred wave function only 
from the value of the residual parameter. For  example, #431 (k = 56.7659) 
of the 2 x 4  stadium (Fig. 9a) has a very small p2 (=0.081), but it has a 
scar. 

The peaks in the 2- and 3-stadiums are generally smaller than those in 
the 2 x 4 stadium. This is because in the 2 x 4 stadium bouncing ball modes 
are distinct; on the other hand in the 2- and 3-stadiums bouncing ball 
modes are obscured due to the contribution of the same one-parameter 
families of periodic orbits (cf. Fig. l id ,  12e, and 9b). 

In the 2-stadium, there exist not only vertical ones which are already 
seen in the 2 •  stadium, but also n/4 directed bouncing ball modes 
(Fig. 1 lc, 1 le, 1 If). Some wave functions almost vanish at the right-angle 
corner. This makes p-~ a little larger. For instance, #314 (k=48.6303) has 
p-~ = 0.128 (Fig. 1 li ). A large number of wave functions have pseudoperiodic 
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textures (for example, #300, Fig. l la) ,  but their p2 are not particularly 
large (p2=  0.086 for #300).  The only exception is #320 (Fig. l lb), which 
gives a most impressive example. It has very large p2( = 0.417) and gives an 
almost perfect periodic pattern. 

In the 3-stadium there exist fewer bouncing ball modes and smaller 
values of the p2 peaks than in the 2-stadium. The pseudoperiodic texture 
is not seen in the 3-stadium. It has more varieties of one-parameter families 
of periodic orbits including horizontal bouncing ball modes (Fig. 12). For  
L~<8 we have seven principal periodic orbits in the 3-stadium 
(L =2.00, 4.48, 4.60, 4.87, 4.90, 5.10, 6.33), but only four in the 2-stadium 
(L=2.00,4.58,4.65,5.00).  Therefore the wave function behavior may 
become more complicated in the 3-stadium. 

In the 10-stadium, at least in studying the behavior of the wave- 
function and the residual parameter, no difference from the 2 x 4 stadium 
can be found. We find many bouncing ball modes, scarred states (see, 
Fig. 10a) and a few whispering gallery modes (Fig. 10b). The p2's are 
relatively larger than other stadiums, but this may depend on the accuracy 
of the wave functions which we calculate. The statistics of wave functions 
seems more sensitive to the accuracy of our calculation than that of 
spectroscopy. 

7. S U M M A R Y  A N D  C O N C L U D I N G  R E M A R K S  

In this paper we have investigated numerically the 2 • 4 stadium and 
the 2- 3- 7- and 10-rational billiards. About 3170 levels from the ground 
state are calculated for each billiard. It is numerically observed that the 
rational N-stadium has a tendency to ergodicity when N ~  + ~ .  The 
NNSD changes from the Poisson-like statistics to Wigner-like statistics as 
the number of sides increases from 2 to 10, which is indicated by the fitted 
Brody parameter ft. The higher the energy, the more distinct is the dif- 
ference between the pseudointegrable billiard and the chaotic one. The A 3 
statistics also shows a similar change. Our calculation also shows the 
energy dependence of the fitted Brody parameter. Each peak in the Fourier 
transformation of the energy spectra corresponds to a classical periodic 
orbit. In rational billiards almost all of the orbits are found to correspond 
to stable bouncing ball orbits. 

The tendency to ergodicity in level statistics is also confirmed by the 
behavior of the wave functions. Up to k = 151 the wave functions in the 
10-stadium and the corresponding ones in the 2 x 4  stadium look very 
alike. 

Although it is believed that the rational billiards have no metric 
entropy, the situation is quite different in quantum mechanics. If the 
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difference of shape between the 2 x 4 stadium and the rational billiards is 
less than the wavelength, we cannot tell the difference in terms of the wave 
functions and energy level statistics. 

In the case of N =  2, similar observations have already been made. t3" ls~ 
In ref. 18 several parameters were examined. Although topologically all 
these are genus-2 billiards, the NNSD and the z~ 3 statistics vary with the 
parameters. The genus number is an important factor, but geometrical 
factors, i.e., lengths of boundary segments, angles of corners, etc., are also 
key issues to determine the characteristics of spectral statistics. 

If we wish to know the difference in the shapes of billiards using a 
Lyapunov pair with velocity v, the inequality v T .~  >cons t  I /N  2 should 
hold, where 0t is the initial velocity angular separation and T is the elapsed 
time. The argument that the difference of shape is of the order of 1/N 2 is 
assumed here. Therefore, setting 0~N2= const, we find that the classical 
behavior of the rational billiards looks similar with respect to the 
Lyapunov exponent, ts~ However, all of these are numerical results. Analyti- 
cal support is necessary to make our conclusions more definite. 
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